AD=A105 203 AkANSAS STATE UNIV MANHATTAN DEPT OF COMPUTER SCIENCE

UNCLASSIFIED

F/6 9/2

T10==ETC(U)
JUL 80 R FUNDIS: v WALLENTINE DAAG29=78-3-0200
' NL

COMMAND PROCESSORS FOR DYNAMIC CONTROL OF SOFTWARE CONFIGURA

TR=80-02

ADA105203

LEVEL ©

~ COMMAND PROCESSORS FOR DYNAMIC CONTRCL '

o OF SOFTWARE CONFIGURATIONS,
/- ‘ Roxanna/i"undis D I I‘
" Virgil Wallentine ELECTET -\. ‘
i} | 0CTO 61981
/e ' .
: :{ Technical Repert .
{ fid] 18-80-02"
A
/ o g rt / *
! 0t - . ([(;- / /
AV AT S L
' £y .

Departuent of Computer Science
Kansas State University
Manhattan, Kansas
TN~
,\ /11) LT Julpeaeees80
NS :

This research was supported in part by the Army Institute fcr Research
in Management, Information, and Computer Systems under grant number
DAAGE29-78-G-0200,/Sfrom the Army Research Office.

This document has been approved
for public release and sale; its
distribution is unlimited,

Joo %
.. 8110 2 121 é

ABSTRACT

Command language facilities for the constructicn and execution of
software configurations--networks of communicating processes--are very
limited today because current operating systems do not support this
level of complexity. The Network Adaptsble Executive (NADEX) is an
operating system which was designed to support dynamic
configurations--those configurations which are constructed at command
interpretation time=-«of cooperating processes. These dynamic
configurati;ns ineclude arbitrary graphs which may contain c¢ycles. Three
command processors have been developed to demonstrate the sufficiency of
the NADEX facilities to support dynam}c configurations.

NADEX facilities, an overview of the Jcb Control System, and the
command processor configuration environment are presented, followed by
user's guides for the command processcrs. Each command processor has
different responsibilities and capabilities for handling configurations:
The NADEX Static command processor executes completely counscted
configurations. The UNIX command processor allows linear configurations
to be constructed dynamically, and the MIRACLE command processor allows
the dyramic construction of arbitrary configurations. Syntax graphs and
sample user sessions are presented for each command processor. /| or
[NTIS GRAsI

§ DTIC TAB
Unannounced

|

By.

R |

x-

’L Distz}bgp;on[~ -
Availability Codes

Avail and/or
Dist Special

. an iy SaiR “‘ g Mibaen 2 &7 0

'

Vo . . g et
: ipgaekin % A ae

1 ml

TABLE JF CCNTENTS

ILLUSTRATIONS
INTRODUCTICN . .« « ¢ ¢ o o o o o o « &

Chapter
I. NADEX FACILITIES . . . « « « + « .
II. THE DO COMMAND PROCESSOR
III. THE STATIC COMMAND PROCESSOR .
IV. THE UNIY COMMAND PROCESSOR
V. THE MIRACLE COMMAND PROCESSOR . . .

VI. SUMMARY AND CONCLUSIONS

Appendix

A. SYNTAX GRAPES « « ¢ ¢« ¢+ . &

5. NADEX NATIVE PREFIX

C. SAMPLE USER SESSIONS« . .

REFERENCES

i1

iii

12
15

21

50
61

63

T2

it o b Bt e 8l ot i e s pap b

PPy 3t

| s

10.
1.
12.
13.
l 14,
15.
16.
17.
18.
: 19.
20.
21,
22.
23.

i
|

ILLUSTRATIONS

PCDT & v v v i v v e e e e e e e e e e

PCD2 & & v v i e e e e e e e e e e e e e e e e e
PCDHIER. + & &« v v &« o o o o o o o o o o o o o« o o o
PCDSAME . & & v e v v i e e e e e e e e e e e e
305 1
Resulting Configuration of PCD2 ! PCD3
Command Processor Configuratiom
SOLO ConfiguratioNn v o« « & o ¢ ¢ o o« o o 4+ o o o o
Execution of EDIT(CARDS,TAPE) « . .
Examples of 0S/32 MT File Descriptors
NADEX Static Fast Commands . . « « « « ¢« « ¢« « « o &
NADEX Static Commands with Parameters
UNIX Commands and Resulting Configurations
UNIX Commands using Sequencing Operators
Examples of UNIX Fast Commands . « . « « . « .
Hierarchical Nodes in CMD.,RES « . . « . .« &
Resolved PCD Files written out by Command Processor
Completed Command Configuration
Comparison between UNIX and MIRACLE Commands
Simulation Configuration . . « « « &+ « &« o« ¢ ¢ + « &
Dining Philosophers ¢ ¢ « o « o o o & &
Examples of MIRACLE Fast Commands « . . .+ .

Comparison of Command Processors . . « « « « + o« o« &

114

R R e e ———a—srwmau

wmn

10
13
13
16

17

. 20

. 22

. 24

26

30
31

35

. 36
. 38

46

e

e e S

S |

———

INTRODUCTION

Command language facilities for the construction and execution cf
software configurations--networks of communicating processes--are very
limited today because current operating systems do not support this
level of complexity. The Network Adaptable Executive {(NADEX)[11] is an
operating system which was designed to support dynanic
configurations--those configurations which are constructed at command
interpretation time--of cooperating processes. These dynamic
configurations may be composed of arbitrary graphs which can contain
cycles. Three command processors have been developed to explore the
sufficiency of the NADEX facilities to support dynamic configurations.
Users' guides to these command processors will be presented in this
document, together with syntax graphs and sample user sessions.

A command allows the user to query the state of a program and/or
the computer and to manipulate its resources. For example, file
mazintenance may be achieved through a command such as

DELETE MYFILE
which deletes a file named MYFILE from the file system; or programs may
be executed with a command like

PAS32 MYFILE

which compiles the Pascal program named MYFILE. The program which reads
and interprets these commands as requests to execute operations or other
programs is commonly known as a goumand processor, ccmmand Joterpreter,
or shell.

JSS—

powie e d e e s e eme s

Wi, o i Ak it -

[

2

In chapter I, IIADEX facilities, an overview of the Job Ccnirol
System, and the. ccmmand processor configuration are [presented. lMucn of
the basic structure of the MNADEX command processcrs is taken frcm 2
command processor called DO which was written by Per Brinch Hansen[3].
This command processor originally ran under the Solo(3] operating system
and the parts of it that prove relevant to further command processor
development are described in chapter II. Although the Solo operating
system does run under NADEX, it is not used for practical purposes.
Chapter III contains a description of the NADEX version of DO.

Since the UNIX‘ shell(2] seems to be the only commercially
available command processor that allows the user to dynamically
configure commands, a small subset of the UNIX command processor was
implement=d to test the sufficiency of and demonstrate the use of NADEX
facilities. This subset of UNIX is documented in chapter IV. 1In
chapter V, the NADEX implementation of Gray's MIRACLE[5] (Machine
Independent Rescurce Allocation and Control Language) is described.
This network command language supports named ports which allows
arbitrary configurations to be constructed. Implementation features and
conclusions are found in chapter VI, Syntax graphs for the command
languages, the NADEX Native Prefix, and sample user sessions are listed

in the appendices.

'UNIX is a trademark of Bell Laboratories

B R A R TR

B BB &2 B0 St e s

» i

-

CHAPTER I
NADEX FACILITIES

NADEX[11] is a message-based, multi-user, network operating system
which was developed 1in Concurrent Pascal. Most current operating
systems support a fixed number of processes cooperating on the execution
of a single user task. However, NADEX was specifically designed to
support dynamic configurations with a variable number of user
processes.

Since this seems to be a rather unpublished field of
research(7, 8], there are few guidelines concerning the usefulness of
dyramic configurations or how best to utilize them. Several different
types of command processors were developed to run under NADEX to
research the practicality of dynamic wuser configurations and the
sufficiency of the NADEX Core 0S to support them.

The NADEX Core 0S[11] provides facilities for realizing
configurations. At this level, a configuration consists of processes
and explicit communication between these processes. Each process may
execute a user program or a system routine. A Data Iransmission Stream
(DTS) allows processes to communicate.

All NADEX command processors use the UNADEX Native Prefix as an
interface to the Core O0S for access to these facilities. The prefix
routines that the command processors use are READ_CHAR, WRITE_CHAR,
READ_DATA, HRITE_DATA. READ_PARM, and WRITE_PARM which read and write
characters, data blocks (512 bytes), and parameter blocks (32 bytes)

3

R st o es e

4
respectively. When a complete Confisuration Descriptor (CD) [17] naz
been created, it is submitted to the Core 0S for execution by cailing
the SUBMIT_CONFIG prefix entry. The lADEX Native Prefix is listed in

Appendix 3.

Introguction to the Job Control Environment

The Job Control System provides the user interface to the NADEX
operating system. It allows the user to operate in a relatively simple
envirorment and to construct configurations in a modular manner. A
brief summary of the Job Control System is presented here; more cetail
may be found in {10].

A user may view a software configuration as being mace up cf
components. Each component wmay consist of combinations of other
components, or subcomponents. A node, which is implemented by a process
in the Core 0S, is the most primitive component and may perform one of
two functions. It may provide access to §ystem resources such as files,
devices, or subsystems; or vit may execute a user program writter in
Sequential or Concurrent Pascal. Bi-directional communication betiween
components is achieved by naming the ports [1] of each node that are to
be connected and then "READ"ing and "WRITE"ing on these buffered ports.
This connection is realized by a DTS.

Each component of a configuration may be described by a Pascal
record which i3 termed a NADEX Partial Configuration Descriptor or
PCD{9, 10]. A PCD thus abstracts and encapsulates one or more nodes of
a configuration. Each configuration may be composed of one or more
PCDs. The information that defines the nodes, ports, and parameters of
a particular PCD record is contained in a PCD file. CGCraphical examples

of PCDs are shown in Figures 1 through 6.

g P

R T T VPR

—

-—

[USRS S T

NCDEY

NODE3

NCDE1
Figure 1. PCD1
NODE7
p1
p3
NCDES

p1 ————*m NODES P2 peraeey QUL

NUDES

Figure 3. PCDHIER

e o a4 e

=

e
P

NODET

pt

P3
Figure 4, PCDSAME
IN p1 NODE9 P2 e 1 NODE10
Figure 5.
PCD2 out| in PCD3
Figure 6. Resulting configuration of PCD2 | PCD3
Mt = L TR T ——— —

as st

B L o g ‘-ki§ﬁ“”h-"

7

PCD1 in Figure 1 is a configuration that contains four nodes. All
ports (WODE1.P1, NODE2.P1, etc.) are connected within the PCD so they
are ipterpnal ports. PCL2 (Figure 2) 1is a partial configuration whicn
contains three nodes. All are connected internally except NODE6.P2,
which is an external port. Its external name is QOUT and may be connected
to another port either at command time or within a hierarchical PCD as
shown in Figure 3.

PCDHIER (Figure 3) 1is a hierarchical PCD because it contains a
component, PCD2, which is itself a PCD. At this level, NODES, NODE6,
and NODET are not visible, although PCDHIER will function exactly as
PCDSAME in Figure 4 in which only primitive nodes appear.

PCDs may be nested several levels deep; PCDHIER could also beconme
a component of another PCD. The ability to create hierarchial PCDs
using the naunes of "lower level" PCDs eliminates unnecessary duplication
where a subcomponent is used more than once. It allows the user to hice
certain details (abstraction) and aids in functional decomposition.

When dynamic configuring of nrodes is allowed, external ports may
be connected at command time. If, for example, a PCD existed such as
PCD3 in Figure 5, PCD2 and PCD3 could be connected at command time with
a UNIX pipe operator. The command

PCD2 ! PCD3
connects the two external ports and creates the configuration shown in
Figure 6. The output from PCLC2 becomes the input to PCD3, which in
effect connects MNODE6.P2 to NODE9.P'.

Besides information about nodes and their port connections, rCDs
may also contain templates for parameters which are supplied by the user

at command time. A PCD may have parameters of type integer, identifier,

[

8
string, boolean, or file descriptor. In additicn, rarameter:s may Le
designated as seing mandatory or cpticnal. A default value must be
sprecified for optional parameters.
Cnly user commands which describde completely resclved

configurations--tilose containing no unresolved ports or parameters--may
be executed. PCD1, PCDHIER, and PCDSAME each represent a couplete
configuration because all ports are connected or resolved and there are
no parameters. bCDZ has an external port which is unresolved and
therefore represents only a partial configuration.

In order to build a complete configuration, the user must be aware
of external ports and parameters. If the PCD has external ports cr
mandatory parameters that are omitted by the user, a prompt message will
be displayed listing the missing information. For example, if the user
types the command GREP--a UNIY program that lists lines from an input
file that «contain a specified string-~the following message will be

displayed on the user's console:

MANDATORY PARAMETER OMITTED
TRY AGAIN:
GREP SCUGHT: STRING
EXTERNAL PORTS: IN, OUT

This zessage tells the user that GREP expects a string parameter named
SCUGHT and that there are two external ports.

Similarly, if external ports are not connected properly, thae
message

ERROR IN PORT CONNECTIONS

is displayed, followed by the external port names. Port modes (READ,

WRITE, READ-WRITE) and protocols (ASCII, SEQUENTIAL, or RANDOM) must be

- e, . . .
"m.l“!_g-“ge“.a s

compatible., If for instance, 2a user :ries to connect a READ port rto
another READ port, the command prccessor will signa. an error, dut <ces
not currently icentify the ports in error. The port node READ-WRITE ::
currently implemented as being compatible with either READ, WRITE, cr
READ-WRITE. ASCII and SEQUENTIAL protocols are compatiole with each
other. The RANDOM protocol 1is <compatible only with itself. At the
present time, the main problem with port connecticons seems to be one of
omission. If the wuser had problems with port mode or protocol
compatibilities, the error message could easily be altered to include
the mode and/or protocol as well as each external port name (similar to

the type information that is included with parameters).

Figure 7 presents an abstract user view of the command prccessor
configuration which runs under NADEX. Each ccmmand processor has
different responsibilities and capabilities for handling
configurations. The NADEX Static command processor will only accept
completely connected PCDs. Dyramic connection of ports at command time
is not permitted. Its syntax includes both keyword and positional
parameters. liith the UNIX command processor, unresolved PCDs may be
connected to form linear configurations. The MIRACLE command processor
allows unresolvec¢ PCDs to be connected to create arbitrary graphs. The
UNIX and MIRACLE languages that are currently implemented are not
recessarily proper subsets of the original command languages; references
within this paper to UNIX and MIRACLE refer to the implementions uncer

NADEX.

10

¢ ,
{ CONSOLE](
CMDP L 4 LINK
FSS
Figure 7. Command processor configuration. ¥
* £
-l Ty g bt) T

11

Although each command processor handles a different set cf
commands, the execution enviromments are all similar. In general, the
command processor parses a command read from the user's console. The
existence of PCD and input files 1is verified, parameters are resolved,
output files are created if necessary, and if supported, urnresoclved
ports are connected. This information is stored in "resolved" PCD
files. A new PCD 1is created by the command processor containing the
names and connections between the resolved PCDs in the command. Its
name is sent as a parameter to the sequential Pascal program LINK[10].

LINK is responsible for 1locoking up all the lower level PCDs,
assigning DTSs, assuring resource availability, eliminating user
information that is not needed, and doing whatever else is necessary to
map the PCD into a2 CD{10]. LINK then submits the CD to the NADEX Core
0S for execution in one of two ways. The first inveolves a ¢all which
causes the command processor configuration to be replaced by the new
user configuration. When the user configuration has terminated, the
command processor configuration is restored to accept further ccmmands.
The second way involves a gspin off, where the new configuraticn executes
concurrently wita the command proces or configuration (providing that
resources are available).

Commands that involve text substitution or operations such as
allocating, deleting, or 1listing a file do not require ccmmunication
with the LINK program and the submission of a new configuration to the
operating system; they are handled by the command processor itself by

sending messages to the file subsystem.

R

' M

CHAPTER II

THE DO COMMAND PROCESSCR

The Solo operating system was written by Per Brinch Hansen and
only runs a configuration which has an input process, job process, and
output process as in Figure 8. The input and output processes may
access devices or files by running sequential programs. The job process
may only locad and execute sequential programs.

The job process initially calls the sequential program DO, which
is the command processor. DO reads the user command from the console
and parses it. The first part of the command must be an identifier
which references an executable program nanme. A lookup operation is
performed on this identifier. If found, and the command contains
parameters enclcsed in parentheses, the parameters are placed in an
argument list. As long as the parameters are either identifiers,
integers, or boolean values, no type checking of parameters is done at
this time. The number and type of parameters must be checked by each
program as it is invoked.

If no errors are detected, the RUN prefix entry is called to load
the program referenced within the command. The entire arglist is passed
as a parameter. For example, if the command EDIT(CARDS, TAPE) were
typed in and if an EDIT program existed, it would be called with a
parameter list containing the identifiers 'cards' and 'tape'. It would
then be executed within the job process.

Since every program is responsible for checking its own

12

eyt Falaw #m."\xm A Ty

ey

HRER 2 I

T

-——

— — -

13

INPUT
PROCESS

JoB
PROCESS

Input Process

OUTPUT
PROCESS

Figure 8. SOLO configuration.

Job Process

Output Process

DO
I0 I0
#m_ __a_ra__*
data J EDIT data #
CARDS TAPE

Figure 9. Execution of EDIT(CARDS,TAPE).

e e e P s

W e A T

14

parameters, the EDIT program must parse the tuc parameters and .asure
that both sourgce and destination filename crarameters are names of
existing “iles. If the output file is not found, a new one i3 c¢reated.
Since it is the user program that is responsible for configuring noces,
it must tell the input and output processes which programs to run. The
EDIT program therefore sends a message containing the first parameter %o
the I0 program executing in the input process. This tells the input
process that it is to run the CARDS program. The second parameter is
sent to the output process. The output process therefore runs the TAPE
program. A diagram illustrating this scenario is shown by Figure 9.

Under SOLO, all configurations are static. The basic shape of the
configuration as illustrated by Figure 8 may never vary. The programs
that run in those tpree processes are determined by the name of the user

program and its parameters specified in the command.

rl— e - g e+ o e - St it S s < s T

CHAPTER III
THE NADEX STATIC COMMAND PROCESSCR

The NADEX Static command processor is similar to DO as it only
executes static commands. However, while a DO command consists of a
sequential program name with 1ts arguments, a similar NADEX Static
command processor command consists of the name of a PCD file followed by
its arguments. Both the program name listed in the DO command and the
PCD file contain information that describe the configuration to be
executed. Like DO, the Static command processor does not allow dynamic
connections with other nodes at command time. Although the PCDs that
are accepted by the Static command processor may contain multiple nodes
connected in an arbitrary graph, the connections must be fully resolved
within the PCD. All connect:ons must be defined prior to command time.

Unlike DO, this coﬁhand processor yill accept two types of
commands. The first type allows "fast" commands to be executed directly
while the second type causes configurations to be built and activated.
The typical command is of the form

command(argl,arg2,...,argN)
where 'command" is the name of a PCD file describing the configuration
to be run or the name of a fast command. The arguments "argl!" through
"argn" may be integers, strings, identifiers, booleans, or file
descriptors with the following restrictions: Integers nmust be equal to
or smaller than 99999999. Strings must be enclosed in single

apostrophes with a length less than or equal to 32 characters. A single

15

g <t e 2 = e e it e e e < i . -

16
apostrophe may be wused within a string by repeating the symbol.
Identifiers aust. be no longer than eight characters. Only the Zoolean
values TRUE and FALSE may be wused. Figure 10 illustrates examples of

0S/32 MT file descriptors.

(a) SYS2:A.PAS/G

(b) B/P

(e) C.OBJ
(d) D.PAS/S
(e) E

(f) USR6:F.CSS

Figure 10. Examples of 0S/32 MT file descriptors.

Figure 10a is interpreted as: Volume SYS2:, file name A, extension
.PAS, on the user's group account. 10b names the file B (with a blank
extension) on tle user's private account. The volume is assumed to be
the user's current volume, Figures 10c¢ through 10f may be interpreted
similarly. An account of S indicates the system account; if this field

is omitted, the default value is P for private.

Fast Comnands

The six trast commands (HELF, ALLOCATE, DELETE, RENAME, ATTR, LIST,
and SIGNCFF) do not start up new configurations. The function and
expected arguments of each of the fast commiunds will be discussed and
examples provided.

The HELP command accepts no arguments. It displays a list of the
fast commands, their arguments, and functions at the user's consocle.
Also displayed is a 1list of executable configuration names and their
functions.

ALLOCATE is used to create a new file. It requires one parameter,

the name of a new 0S/32 MT file descriptor. If the specified file

RIS O

‘Wu‘w” PIEre

e ha e as wae

17
already exists, an error message will be displayed.

DELETE also requires a parapeter consisting of 0S/32 UT file
cescriptor. If the designated file does not exist, an error message is
displayed.

The RENAME command requires two file names separated by commas:
the first one must be the name of an existing file and the second must
be a the name of a new file. If the first name does not exist or the

second one does exist, an error will occur and no names will be

changed.

The fast command ATTR requires a file descriptor parameter. It
returns the attributes of the specified file, including the fully

qualified name, the number of records, and length.

The entire contents of a file may be displayed at the console by
typing LIST and a file descriptor. If the file does not exist, an error

will occur.

To terminate a user session, the fast ommand SIGNOFF is used.

Examples of fast commands are provided in Figure 11.

HELP

ALLOCATE lEW.PAS

ALLOCATE SYS2:TEST.PAS/P
DELETE NEW.OBJ

DELETE USR6:FILE3.TXT
RENAME FIRST.PAS,SECOND.PAS
RENAME SYS2:WOW.OBJ,WOWOWOW. CBJ
ATTR SYS2:WHAT.PAS

ATTR HOW.CBJ/P

LIST TELL.TXT

LIST LISTS.TXT

SIGNOFF

Figure 11. NADEX Static fast commands.

B - 1o & e fesitn St ot 2

-

L

18
Configuration-Building Commands

If the command is not a fast ccmmand, the first item in the
command line nmust be the name of a PCD file. This PCD file is read by
the command processor to determine what mandatory and optional argurents
are expected. The arguments typed in are parsed, and if they are
compatible with the templates, they are filled into the PCD and sent to
LINK for execution as explained in chapter I.

Only one command per lire is accepted. An optional semicolon ma&
follow the command. Blanks may be used anywhere except within an
identifier or a number. Parentheses surrounding the argument list are
optional. Arguments must be separated by commas. A NEWLINE character
may directly follow a comma in an argument list. Association between
actual parameters (those ¢typed in by the user at command time) and
formal parameters (the templates specified in the PCD) may be made
either positionally or by explicit naming. To illustrate the discussion
of parameters, a PCD named PARMEX has been defined as:

PARMEX [PARM1 : STRING DEFAULT('NS")],
[PARM2 : FD DEFAULT(SYS2:IN.TXT/P)],
PARM3 : FD,
(PARMY4 : INTEGER DEFAULT(48)]

PARMEX may use 4 parameters, 3 of which are optional. The first
parameter which 1s optional and named PARM1, is a string type and has a
default value of 'NS' if it is not specified at command time. The next
two parameters are file descriptors. PARM2 is an optional parameter
with a default value of SYS2:IN.TXT/P. PARM3 is a mandatory parameter;
failure to specify a value at command time constitutes an error. The
last parameter, PARMU, is an optional integer with a default value of
48. Figure 12 lists possible commands involving PARMEX.

If specified positionally, the order of the actual parameters must

19

correspond to that of the formal parameters. Optional arguments that
are omitted nust be indicated by commas. Figure 122 indicates that the
first and second parameters are omitted and that the value of the third
parameter is OQUT.TXT. Optional parameters omitted at the end of a
parameter list do not need to be indicated with commas, so the last
comma is acceptable but not necessary. Figure 12b will therefore have
exactly the same effect as the previous command. When named parameters
are used, commas do not need to be used to indicate positions of
parameters which have been omitted. Figure 12¢ is also equivalent to
the previous two commands.

Named keywords may be specified in any order as illustrated by
Figure 12d. The same values 1listed positionally are given by 12e. 4
combination of positional and named parame;ers may be used, but it
should be noted that the use of a named parameter will reset the
positional pointer. Notice that in Figure 12f, the integer 55 is in the
third position but it becomes the value for the fourth parameter because
it immediately follows a named occurrence of the third parameter. In
Figure 12g, the attempt to place the value EXTRA in a fifth parameter
will result in an error because PARMEX only has four parameters.

Parameter values specified at command time may be overridden with
the use of keywords as in Figure 12f where PARM! first gets a value of
'DOG', and later receives the value 'COW' with the use of the keyword
parameter. Although this is legal, it is not good programming anc a

warning message will be issued by the command processor.

Pedas et R B

(a)
(b)
(e)

(d)
(e)

()
(g)

P:iRMEX
PARMEX
PIRIUEX

PARMEX
P:RMEX

PARMEX

20
(,,CUT.TXT,);
, » OUT. TXT
(PARM3 = CUT.TXT);

(PARM4=312,PARM2=RED. TXT, PARM1='3S', PARM3=TEST. PA3) ;
(138!, RED.TXT, TEST.PAS, 312)

('DOG', PARM3=0UT. TXT,55,PARM1='COV")

PiRMEX PARM4=G99, EXTRA

Figure 12. NADEX Static commands with parameters.

e — - -

CHAPTER IV

TEE UNIX COMMAND PROCESSOR

Ihe UNIX Command Language

The UNIX command processor developed to run under the NADEX 0S
implements linear connections between PCDs using a UNIX style syntax.
As with the Static command processor, it will accept either "fast"
commands or configuration-building commands. A basic UNIX
configuration-building command consists of an identifier which is a PCD
name followed by its parameters:

PCDNAME parml ... parmiN
No parentheses surround the parameter 1list. Parameters must be

separated with blanks. Keyword parameters are not accepted.

UNIX Configuration-Building Operators

There are four operators that may be used to connect the
unresolved ports of PCDs. Figure 13 1illustrates the wuse of these
operators in UNIX commands with the resulting configurations. The first
operator is the UNIX pipe (!) which connects the external ports of two
unresolved PCDs as in Figure 13a. Each PCD can have a maximum of two
external ports--one for input from and one for output to a pipe. This
is necessary since the standard UNIX shell does not support
specification of port connections in the command language. Input and
output redirection is supported with the < and > operators respectively

(Figure 13b = ¢). Output from a PCD may be appended to a file by using

21

H
. Gt

P

22

PCD1 ‘ pPCD2

(a) PCD1 ! PCD2

INFILE { PCD1 * OUTFILE

(b) PCD1 <INFILE D>OUTFILE

INFILE —* PCD1 '—{ pPCD2 ——{ OUTFILE

(e¢) PCD1 <INFILE ! PCD2 >OUTFILE

PCD1 -—*; PCD2 —-% PCD3 —{ APPENDFL

(d) PCD1 ! PCD2 ! PCD3 >>APPENDFL

Figure 13, UNIX commands and resulting configurations.

CETG gk . .

23
the >> operator as in Figure 13d. Bach input, output, and append
operator nust be-directly followed by a file name (see la£er discussion
on tiie hierarchical file systen).

In Figure 13a, the output port from PCD1 is connected to the input
port of PCD2 with the pipe operator. In Figure 13b, PCD1 has two
external ports. Its input port will te connected to a file named INFILE
and the output will be channeled to a file named OUTFILE. The INFILE
and OUTFILE nodes 1in the corresponding configuration are fileagccess
nodes, which are nodes that provide access to named files.

With a maximum of one input and one output port, only linear
configurations (pipelines) can be built. The following commands violate

this rule and therefore are illegal:

PCD1 <INFILE1 <INFILE2 (two input files)
PCD1 >OUTFILE1 D>>APPENDFILE (two output files)
PCD1 <INFILE D>CUTFILE ! PCD2 (two output files)
PCD1 ! PCD2 <INFILE (two input files)

Command Sequencing Operators

The &, ;, &, and !! operators also have special meaning to the
UNIX command processor. Examples are provided in Figure 14 below. Wwhen
an ampersand (&) follows a command, the command will be spun off. The
command processor configuration will not terminate; new commands may be
entered and executed concurrently with this configuration.

The semicolon (;) may be used to terminate a command. t is not
required when a single command is enterad on a line as the NEWLINE
Qharacter will signal the end of the command. However, when more than
one command is entered on a line as in Figure 14b, a semicolon nmust
separate the two commands. If a line contains nmultiple ccmmands and an

error is cetected (the syntax is wrong, a file is not found, mandatory

R s R S D O R e it

—-—

24
parameters are omi%ted, or there 13 an error in the external pore
connections) the rest of the line is ignored. for exampie, if
WC <INFILE D>CUTFILE; LIST OUTFILE
was typed and INFILE does rot exist, the second command on the lire,
LIST CUTFILE, will be ignored.

The McCarthy '"andf" (&&) and "orf" (!!) operators provide
conditional execution of comuands[2]. When an "andf" 1is used, the
command on the right of the && will be executed only if the first
command was successful and is similar to

IF cmd1 THEN cmd2 .
The "orf" cperator allows execution of the second command to proceed
only if the first was unsuccessful as

IF NOT cmdl THEN cmd2

(a) PCD4 t PCD5 >OUTIFILE &

(b) PCD1 >OUTFILE ; PCD4 ! PCDS

(c) COPY <OLDFILE D>NEWFILE && DELETE COLDFILE
(d) PCDNAME <(THISFILE !!' PCDNAME D>THATFILE
{e) PCDY !'! PCD2 && PCD3

Figure ‘4, UNIX commands using sequencing operators.

UNIX Fast Commands

The UNIX command pr :ssor accepts twelve fast commands which are
CREATE, CREATED, DELETE, ADD_FD, RENAME, ATTR, LIST, HELF, LS, CWD, PWD,
and SIGNCFF. Many of these [fast commands are similar to (¢ .x of the
Static command processor, except that UNIX path names are used instead
of CS/32 MT file descriptors. The syntax graph for a path name is found
in the UNIX syntax graphs (Appendix A); a discussion of the semantics of

path names is found in [2, U4]. Path names are illustrated below.

25
/DIR1/DIR2/DIR3/TARGET
“TEZST
"T"MYFILE
YOURFILE
DIRV/FILEX

A slash (/) that begins a path name indicates the root directory.
Slashes are also used to separate intermediate directories. The last
identifier in a path name 1is the target name which may be either a
directory or a data file name. A carat (") indicates the parent
directory.

The CREATE command allocates a new ASCII file and places its name
in a UNIX directory. It requires one argument, the path name of the
file to be ailocated. If the file already exists or an intermediate
directory is missing, an error will result.

CREATED allocates a new directory file. It requires the path name
of a new directory file. An error occurs if the designated file already
exists or an intermediate directory is missing.

DELETE is used to delete the specified file and erase its narme
from the UNIX directory. It requires one argument consisting of the
path rame of an existing file. If the designated file does not exist,
an errcr message is displayed.

ADD_FD is used to make an existing 0S/32 MT file accessible to the
UNIX directory. It requires two arguments: the first must -be the new
path name and the second nust be the name of the existing MT file
enclosed in apostrophes. If the path name already exists or the MT file
does not exist, an error occurs.

RENAME, ATTR, LIST, HELP, and SIGNOFF work exactly the same as

tnhey co in the Static command processor, except that they require path

names as arguments instead of 0S/32 MT file descriptors.

LS lists the names of all the files within the current werking
directory at the console. It accepts no arguments.

CWD is used to change the current working directory to that of the
path name specified as the argument.

PWD displays (prints) at the console the fully qualified path name
of the current working directory.

Figure 15 lists examples of UNIX fast commands.

CREATE PCDS/GREP
CREATE GREP/PAS
CREATE COBJ
CREATED /PLS
CREATED PAS/HI
DELETE /PCDS/GREP
DELETE ~~7WC
ADD_FD /PCDS/GREP 'GREP.PCD'
ADD_FD \C 'WC.PAS'
RENAME PCDS/UNIX PCDS/OLDUNIX
ATTR UNIX

ATTR “TEST

LIST /PCDS/%C
LIST GREP

HELP

LS

WD /PCDS

CWD /

CWD ~~

PWD

SIGNOFF

Figure 15. Examples of UNIX [ast ccmmands.

Dypamic Copstruction of Linear Configurations
As the name of a PCD file is enccuntered in a commarnd line, that
file is read in and 1its templates for parameters and external
connections are matched with the values supplied in the command. If ne¢
errors are detected, the missing parameters (if any) are filled in and
the "resolved” PCD file is then written out with an extension of .RES.

A unique rnumber is appended to its file name so that no confusion will

ALY S RN

27

arise if the command contains mnmultiple instances of a PCD, each with
different parameters (see following example). At this time, the command
processor creates a hierarchical node in a new PCD which "remenmbers" the
name of the file just written out. This new command PCD will reprecent
the configuration created at command time. It will contain the names of
all the PCDs found in the command line as well as fileaccess nodes for
pipe input and pipe output (<,>) filenames.

After a node nas been created in the command PCD for each PCD and
pipe input or output file in the command, all ports are connected.
Ports that were external to the lower level PCDs are now internal to the
new PCD created by the command processor and are therefore able to be
connected at this time. This fully resolved PCD is given the name
CMD.RES and written out. Its name is then sent to the LINK program,
which will read in and 1later delete each RES file, assign DTSs, and
complete the configuration before submitting it.

Given the existence of GREP and WC‘ PCD files, a user could type
in the comiand line

GREP </TXT/HELP 'EXT' ! GREP 'PORTS' ! WC >/TXT/CUTFILE .
Tne comniand processor would first read in the GREP PCD file. It would
assign the string 'EXT' to the parameter named SOUGHT and then look up
the input file HELP to make sure it is there. The command processor is
responsible for verifying the existence of all input files appearing in
the comnand line since this is a 1likely source of user error. If the
input file exists, a fileaccess node is created to read in the file HEL?P

and this becomes the first node in the command PCD(Figure 16a).

'WC 18 a UNIX word count program that prints the number o¢f words,
lines, and characters found in its input file.

28

Since this file name was preceded by a pipe input (<) character, <ne
port name for {his fileaccess node 1s named 'QUT' so that it can be
connected to the port GREP.IN. After the pipe character is cetected ard
all arguments are resolved for the GREP PCD, the file is written out
with the wunique name GREP1.RES (Figure 17a) and a hierarchical node
referencing the GREP1.RES PCD file is allocated in the command PCD as
shown in Figure 16b.

The next PCD is then read in, which is GREP in this example. The
parameter is now 'PORTS' so this information is filled into the PCD, and
the resolved PCD is written out with the name GREP2.RES (Figure 17b) and
becomes tiie third nocde in the command PCD (Figure 16¢).

Similarly, a fileaccess node is created with a port named 'IN' for
the output file OUTFILE (Figure 16d) and after the PCD for WC has been
resolved, WC3.RES is written and assigned to a node. The new PCD now
contains five nodes of Figure 16. After all ports have successfully
been connected, the complete command configuration is illustrated by

Figure 18.

AR N

(a)

(b)

(c)

(d)

(e)

29

HELP T A — 4

——}in GREP1 out

w

—-——)rin GREP2 L e ——

~—————Jfin OUTFILE

-———*15 WC3 out | ———)

Figure 16. Hierarchical nodes in CMD.RES

TS NNN e d

30

GREP

—ﬂin outr—q
SOUGHT = ‘ext'’

(a) GREP1.RES

GREP

——in out e

SOUGHT = 'ports'

(b) GREP2.RES

Hn WC out| ~9

(c) WC3.RES

Figure 17. Resolved PCD files written out by
the UNIX command processor.

et My, & gt

PRI EUIRERT LSRRIy 3 St

[PY Y VRV

31

*UOT3eIN3TJUCO puEmIOd pajeTdmon °gl sundry

TITALNO =+ o £ ET 00 Zd3yo Eﬂlll

no 14340 cﬁrl'.

o JTH

CHAPTER V

THE MIRACLE COMMAND PROCESSOR

MI..ACLE[4] (Machine Independent Resource Allocation and Control
Language) was chosen for the implementation of dynamic NADEX
configurations allowing arbitrary graphs because it supports named
ports. It is an expression-oriented language and its command syntax is
similar in many respects to UNIX except that the use of named ports
within the language no longer places a one-in one-out linear restriction
on the connection of PCDs.

MIRACLE commands may either construct configurations or invoke
internal functions. Those commands which build configurations reference
PCDs which are external to the command processor. Internal functions
reference built-in functions ("fast" commands) or strings containing
MIRACLE expressions. These internal functions begin with a '$' to

distinguish tinem from external PCDs with the same name.

Configuration-building commands
As with UNIX, the basic form of a MIRACLE configuration-building
command consists of a PCD name followed by its parameters:
PCDNAME parml ... parmi
Either positional or named parameters may be used.
If the PCD has external ports, all such ports must be connected at
command time with one of the port connector operators., The simplex

input (<), simplex output (>), append (>>), and implicit pipe (!) are

32

R R re—————————

B a7 W PR

B e

e ——— -

33

familiar to UNIX |users. In addition, MIRACLE defines several other
port-connecting operators, of which the update (<>) and explicit binding
(!1) operators are currently implemented. Each <, >, <>, or >> operator
must be directly preceded by a port name (all port names within a PCD
must be unique) and followed by a pathname or *<connection number> such
as "En, Thé #{connection number> construct represents a user-~defined
link or data path between two ports.

If data from a file serves as input or output for a PCD, the PCD
port must be named, followed by the port operator and the path name of
tne file:

PCDA PI<KINFILE P2<>RWFL P3>QUTFILE PU4>DAPPFILE
In this example, PCDA has four external ports. P1 is an input port that
will read data from a file named INFILE. Data may be read and/or written
to the file named RWFL through port P2. P3 will serve as an output port
for data to be written to the file OUTFILE and data will be appended to
the file APPFILE through port P,

As with UNIX, when a linear configuration is built, the implicit

pipeline operator (!) can be used:

PCD1 ! PCD2
The implieit operator can only be used to connect a PCD that has a
single output port to another PCD with a single input port. Therefore,
port names are not necessary for linear configurations.

However, linear connections can also be described with MIRACLE
syntax in a more explicit manner by naming the ports and connection
numbers:

PCD1 CUT>#1 11 PCD2 INK¥1

The explicit port cornnecting operator (!!) tells the command processor

BRIy s Ao e

34

that all connections will be expressly defined. In the above example,
the port PCD1.CUT 1is to be connected to port PCD2.IN over connection
number 1. When naced ports are wused, configurations are nc longer
restricted to being linear. There 1is a system-defined limit of 15
connections. (A maximum of 32 ports may be connected at command time.)
Exactly two ports may be connected with the same connection number; an
attempt to assign more than two or only a single port to a specific
connection number will be detected by the command processor as an
error.

The explicit connector must always be used when any PCC within a
configuration has more than one input or output port. No mixing of
implicit and explict connections is allowed. The following command is
illegal

PCD1 ! PCD2 INK¥3 !! PCD4 OUT>#3
because PCD2 obviously has ¢two input ports-only one cof which is
explicitly connected.
UNIX: COPY <FILE1 D>FTLE2
MIRACLE: COPY INKFILE1 OQUTPUT>FILE2
UNIX: WC <INFILE ! CONSOLE
MIRACLE: WC INKINFILE ! CONSOLE
or WC INKINFILE OUT>%Y4 !! CONSOLE IN<KHY4

UNIX: no equivalent
MIRACLE: PCD1 PORT3<*2 PORT2<¥4 PORT1>>#1

figure 19. Comparison between UNIX and MIRACLE commands.

All configurations +that can be built with the UNIX command
processor will also run under the MIRACLE command processor with the
addition of port names where appropriate (see Figure 19). However, the

reverse is not true if the configuration is not linear. Figures 20 and

B b, £ ¥ YRS QTP

PN ol L

i Tggy

4 vwan

35

EaONOWWIS 1SAL260L OTYVNIOS 11 2a<ONOWIS 1SALIGOL OTHVNAOS
\ 11 Le<ONOISIIS YALSYW OTHVYNADS 11 Ea<OZANIOS Zx<>IANIIS La<OYIISYH NOWOS °02 aundTy

35932q0(= DOYINIIS J491SeW = HOYdNIIS
uowmats 2UIOE Jajsen vomITs
oumry #lumﬂlv P4 NOVBIS 3 ﬂ':.l..v. ousTy
OTMVYNIOS OTYVNIAOS
{ousos
4]
uownts

1s931q0f = DONJNIIS

OIYVNEOS

P R T

e o]

36

\
\
\

*saaydosoriyg Buturq

Sx<>LTIHd
I ha<>ZTIHd ExOUTIH €304 1 WmAvmonm #<>HOOY
Ui Le<>CTIHd 9x<>1TTHA 25M0d §i

{1 68<>2TIHd La<>UTIHG LDMOJ &4 €

*L2 sandty

#(OCM0I 9u OHOOY
#<OOMOA S<OHO0H Lx<>LOJ LTIH

L LTTYd

#<O2TINHd 2u<>1LTIHd HOOY
+> M0 €1IHd
#<>1 04 ZTIHd

. Tud
" W04 21y .
2H40] 20
» mOoOod JHd
€1IHd woo. - o o | 21
1303 LA10g
grryd 2rrud
e WooM 6x
LTTyd
Zty FARTL
€304 2n 1 O0d
LtTyd 11TYd
WOoOd
N moy 11IHd Cto«ﬂ n
€ #

37
21 demonstrate two MIRACLE commands and the configurations which
result. The canfiguration shown in Figure 20 will run a simulation
program. The Dining Philosophers configuration is illustrated in Figure
21. Neither could be built at command time with the UNIX command

processor because they are not linear configurations.

Internal Functions

Besides building a configuration which the command processor must
send to NADEX for execution, the wuser may invoke internal functions
which are evaluated within the command processor. The names of these
internal functions must be preceded by a dollar sign ($) to distinguish
them rrom external names (PCDs). The basic form for a function
invocation is:

$funct_name pl1 ... pN

where “"funct_name" is the name of a built-in (primitive) funection or

previously stored string.

Built-in functions. Many of the MIRACLE built-in functions are
similar to the "fast" commands implemented in the two ccmmand processors
descrived previously. Those which are currently implemented in MIRACLE
are described below with examples provided in Figure 22.

ALLOC and ALLOCD operate the same as the UNIX CREATE and CREATED,
respectively. DELETE, ADD_FD, ATTR, LIST, LS, CWD, PWD, and SIGNOFF
operate the same as their UNIX counterparts.

The internal function HELP ($HELP) displays at the console th
names of MIRACLE fast commands; the external command HELP (with no §)
causes a configuration to be executed which displays executable external

names (PCDs).

oo - Ao I e han

-— -

e T o _
BT RE | R0 £ T e SRR

— -

38
Tre internal function DCL allows the wuser to declare an .nternzl
variable cf type string or boolean. The syntax for this command is:
$DCL Svar_name: var_type
where "var_name"” is a unique internal variable and "var_ type" is either

STRING or BOOLEAN.

EDIT displays the contents of an internal string variable at the
console. It requires one argument which 1is the name of the string

variable.

The internal function NOT will negate the result of the
parenthesized expression that follows it. If, for example, the

expression is

$NQOT ($ATTR /MIRC/PCDS)
and the patnname exists, the parenthesized expression result is TRUE.
The NOT function will nregate this result--the result of the entire

expression is FALSE.

$ALLOC /THIS/NEWFILE
$ALLOCD ~THAT/NEWDR
$DELETE /THIS/USELESS/FILE
$ADD_FD ADDEE 'ADDOR.PAS'
SATTR IS/IT/REALLY/THERE
$LIST ~"GROCERIES

$EDIT SSIMSEQ

$HELP

$CWD /TOCLS

$PWD

$LS

$DCL $A : BOOLEAN

$DCL 8STRV : STRING

$NOT ($CWD “CLDDR)

$NOT ($PUD)

$NOT (PCD2)

$NOT (PCD1 ! PCD4)
$SIGNOFF

Figure 22. Examples of MIRACLE fast commands.

T ———— R, LA ANy ek e r v e

4

B N S

39
Lsaternal stiring functions. A user-defined internal string
function may te executed by typing its name followed by its arguments.
The comuand string may be stored with the construct
$INTFN = ' e !
where "e" is any valid MIRACLE expression, including other internal
functions or configuration-building commands.

Either positional or keyword parameters may be included in the
command string. A pound” sign (#) followed by a number indicates a
positional parameter. A pound sign followed by an icentifier may be
used for ramed parameters. For example:

$FN1 := '$CWD #1; SLS!
stores the string containing two built-in functions in the internal
function variable FN1. This function may be invoked with the construct
$FN1 /MIRC/PCDS
which causes the command processor to evaluate the contents of the
expression stored in the string. /MIRC/PCDS will be matched with the
argument required by $CWD. The current working directory will be
changed to /MIRC/PCDS and LS will cause the contents of this directory
to be listed at the console.

Similarly, the internal string function FN2 méy be initialized and
later invoked with the following command sequence:

$FN2 := '$CWD #PN; WC IN<#2 OUT>OUTFILE!'

$FN2 PN=/PCDS GREP/PAS
Keyword parameters are counted and may reset the positional counter. In
the preceding example, the named parameter PN is counted as parameter

number one and tne parameter GREP/PAS is parameter number two.

© ——y

40
Sequencing op tors
The semicolon (;), NEWLIME, and independent fork (&%) characters
are birary operators whichk mmust be cirectly creceded and lirectily
followed by an expression. Thus, a command such as
SLS;
followed by a NEWLINE character will result in a
SEQUENCING OPERAND ERRCR
because the NEVWLINE directly followed the semicolon. The command
SLS; $PWD
is perfectly acceptable; the semicolon is a binary operator which
separates the two expressions.
The independent fork (&&) 1is a spin off. Gray also included
dependent forks (&) but these were not implemented.
Commands may occupy multiple lines by directly preceding the
NEWLINE character by a backslash (\) to escape the NEWLINE. For
example,

$CWD
/DR/PCD

will result in an error because of the NEWLINE between $CWD and its
argument. However, in the following two examples, the NEWLINE has been
preceded by the backslash character, causing the NEWLINE to be ignored.

$CWD \
/DR/PCD

$LS; \
$PWD

The use of the escaped NEWLINE is particularly useful when commands are

very long (as in Figures 20-21).

41
Expression results and control structures

Since MIRACLE is an expression-oriented language, every expressicn
returns a resu.t. However, only - .3sions on the right hand sice of a
sequencing operator are remembered; left hand side results are
effectively ignored.

WILACLE supports IF-TEEN-ELSE-FI, EXIT, and LOOP control
structures. The reserved words used in these control structures must be
preceded by a period (.) to distinguish them from external names or
internal rfunctions.

IF expressions are of the form:

.IF e .THEN e .FI or .IF e .THEN e .ELSE e .FI
where "e" is any valid MIRACLE expression. (IF expressions can thus be
nested.) Since one of the productions for an expression is a binary
cperator (such as a NEWLINE) separating two expressions, the following
construct can be produced:

.IF $pwd
$1s .THEN ped parmi .FI

A more us;ful command sequence might be:
.IF pas32 <testprog >errfile \
.THEN .IF pestab testprog .THEN testprog .FI \
.ELSE $list errfile; pedit <{testprog .FI
Tre first expression would run the Pascal compiler configuration

with input from a program named TESTPROG. OQutput from the compiler
would be chanreled to a file namec¢ ERRFILE. Assuming that the comrpiler
was modified to produce a return code that indicated when any errors
were detected, the result of the IF expression would determine further
action. If no errors were found, the value of the first expression

would be TRUE 8o the THEN~clause would be executed. If the PESTAB

operation on TESTPROG was successful, the program would then be

R N SRR PSS T T T T T e

42
executed., However, it an error was cgetected during the compilat:on, tne
ERRFILE (containing the list of detected errors) would be listed at the
console and the program opened for editing.

.EXIT rmiust be followed by a boolean TRUE or FALSE and is used tc
terminate a function. The boolean value then becomes the value of the
expression. For example:

$fn3 := ' .IF $not $attr myfile \
.THEN .EXIT FALSE ©\
.ELSE edit myfile .FI '

The .LOOP control structure is terminated with the reserved word
.END . Used within a loop, tne reserved word .NEXT passes control back
to the beginning of the loop. As with .LEAVE, its appearance is only
valid within a loop. The reserved word .LEAVE must be followed by an

expression. It exits the loop, and the value of the expression

following it becomes the value of the loop expression.

1y % 3,

CHAPTER VI
SUMMARY AND CONCLUSIONS

The development of the Static, UNIX, and MIRACLE prototype command
processors was motivated by four objectives. The investigation of the
sufficiency of the NADEX operating system to support arbitrary dynamic
configurations was a primary objective. Under the CUNIX command
processor, linear dynamic configurations were realized. With the
MIRACLE syntax allowing the user to specify ports and connections
between these ports, arbitrary configurations were constructed at
command interpretation time and successfully executed, thus proving the
sufficiency of the NADEX 0S.

A second area of investigation was the sufficiency of PCDs. The
information needed to implement any of the command processor features
was found to be present in the PCD record, as well as information
necessary to provide the user with help messages. Not all ccmmand
processors used every field in a PCD record (named parameters are not
used in UNIX, for example) but no information was found to be lacking.

The development of portable command processors was the third
objective. These three command processors can be used with any
operating system that meets three criteria: The operating system must bde
able to realize configurations represented by PCDs[9]. The system nust
be interactive, allowing the wuser and the command processor to

communicate. Finally, the operating system must support a file system.

43

ST Vi bl SR ST s T

y-l; — = ——p— e e

by
Modifications to the command processors may te required to interface to
t.e file and éonsole systems, but these interfaces are well-defined and
should be easily adaptable. These command processcrs may be used with
any operating system which supports the execution of configurations
constructed with PCDs. In fact, such an operating system must use one
of taese (or a similar one) in order to build dynamic configurations.

The fourth objective was the exploration of the concept of user
adaptable command processors. It 1is significant that the command
processors for the NADEX operating system were designed to execute, rot
as an integral part of NADEX, but on top of the operating system. This
concept allows flexibility iﬁ the creation and choice of command
processors. Three very different command processors have been created.
The NADEX user is free to choose any one of the three, tailor one to a
particular need, or create a new one.

The Static command processor executes completely connected
configurations. Although dynamically c¢onnected configurations may not
be executed, any configuration that can be built at command
interpretation time with UNIX or MIRACLE can also be constructed as a
static configuration. This command processor does not need to connect
ports or contain extra PCDs so it is relatively small and efficient.

The UNIX command processor is wuseful for creating dynamic linear
configurations. It is best utilized for those '"one of a kind"
configurations that are not used enough to justify building a static
configuration that could be used repeatedly. Its syntax is simple and
much easier to use that of MIRACLE.

Dyramic configurations containing arbitrary grapus may be

constructed with the MIRACLE command processor. With its control

gy et a

45
structures and string functions, it is an extremely powerful
interpreter, but its syntax 1is complicated because a great variety of

symbols must be manipulated by the user.

Implementation

The Static, UNIX, and MIRACLE prototype ccmmand processors were
developed in Sequential Pascal on the Interdata 8/32. Early testing was
done under SOLEX, which was a static, relatively small version of NADEX
used for development purposes. The dynamic connection of ports required
the facilities of NADEX, under which all three command processors now
run.

The Static and UNIX programs took approximately seven months to
develop. A great deal of that time was spent 1in learning how to
manipulate PCD records and’' interface with the file system and LINK
program. During this time, the PCD record format changed twice and the
entire system was under development 350 there was 1little or no
documentation upon which to rely. Although the MIRACLE command
proceésor implements a much more powerful language than either of its
predecesscrs, its relatively short implementation time of two months
reflects the experience gained.previously.

With its strict type checking, powerful data structures, and
self-documenting code, the choice of SPascal as the implementation
language has had a favorable impact on the development of the command
processors. The Symbolic Debugger was also very helpful, especially for
tracking "phantom'" errors that were a result of interface problems with
LINK or the subsystems or when it was not clear where the error

originated.

T g, e Ao F e

—

ug
Comzend Lines of Coue Data
Processor Code Space Stpace
Do 650 6K 2K
Static 2020 16K 6K
UNIX 2700 30K 26K
MIRACLE 3400 41K 32K

Figure 23. Comparison of command prc-essors.

Brinch Hansen's command processor DO performs no parameter type
checking: all parameters are passed to the appropriate programs without
interpretation. This means that each program brought up by DO must
parse its own parameters. The command processor is nice and small (see
Figure 23), but much code for parsing parameters has to be duplicated by
the called programs.

The NADEX command processors read in PCDs which contain templates
for expected parameters and external ports. If a program uses a
parameter that is a lexical pattern which does not match one of the
comuand processor types, an array of 32 characters may be passed to the
program for it to parse as it wishes. Otherwise, all arguments in the
conmmand line are parsed and compare; with the templates. Programs are
not called unless all ports are connected and their parameters are of
the correct type, number, aand order,

If any discrepancies are found such as parameters of the wrong
type, missing or extra parameters, or incorrectly connected ports, an
error message 1s displayed at the wuser's console. Mandatory and
optional parameters are listed with their types and default values
followed by external ports names (see the user sessions in Appendix C).

A deliberate attempt has been made to include descriptive error
messages so that the user is given as wuch help as possible with ports

and parameters. This is nice for the user, but not without its cost as

o ——

47

indicated by the increased code and data sizes of the NADEX command
processors as l}sted in Figure 23. The command processor must reserve
approximately 4600 bytes of data space for each PCD record. Since the
Static command processor uses only one PCD at a time, its data space is
small. Both UNIX and MIRACLE must reserve room for at least two
PCDs-~the PCD whose arguments are being parsed and the PCD being created
for the command configuration.

The Static and UNIX command processors were vootstrapped cff of DO
and owe much of their structure and parsing routines to that progranm.
They use a two~-pass method of interpretation: the lexical and syntactic
analysis 1is performed first, followed by &a semantic analysis.
Difficulties encountered with interpreting pipeline commands contributed
to the use of a different approach in MIRACLE.

The MIRACLE command processor uses the same lexical routines, but
its expression-oriented nature led to the use of modified
operator-precedence parsing. Since it allows recursive evaluation of
expressions, its data space 1is significantly larger than the other
command processors. Further details of the implementions may be found

in a technical report[5].

Further research

The command processors have yet to be vigorously tested by users
other than those involved in the implementation. More user experience
is needed to make the error messages as user-oriented as possible.
MIRACLE presents the most complicated and as yet, untested user

interface.

e i

(X "STYEN I

48

AS mentiored 1in the Introduction, cort moue and protccol
information should perhaps te included in the help messages. Al:zc,
instead of abandoning a command when missing ports or parameters are
detected, the command processor might prompt the user for the missing
information. The original UNIX shell alliows input and output bindings
to default to the console, which also might be nice to implement with
the NADEX command processors.

The UNIX shell handles many of the same control structures that
are currently implemented in MIRACLE. If these prove to be valuable,
they could be added to the NADEX version of UNIX. Other extensions to
the languages, such as pattern matching, are also under investigation.
Of particular importance are task control functions such as the
MIRACLE's INIT, START, STOP, WAIT, KILL, etec. These have not yet been
implemented as the status of an executing task 1is not currently
available to a NADEX command processor.

UNIX and MIRACLE use a hierarchical file system[10] which is
currently superimrosed on the 0S/32 MT "flat" file system. This can be
rather confusing (a file created with 0S/32 MT is not accessible to the
hierarchical system until it has been panually added). The file system
does not currently support the RENAME command.

Return codes from configurations which have been executed are not
currently available to the command processor. Although the UNIX "andf"
and "orf" and MIRACLE control structures depend on these return codes,
they are currently implemented as always returning TRUE.

An interesting area of research lies with the graphical
representation of configurations as input to a command processor. The

user would theoretically use a light pen to "draw" the configuration to

S e e ———— i,

T VP o - Cermag, PG IR S
e, Preisn. . v % - X

49
be executed.
Since :iese command processors were developed as prototype models,
small code size and efficiency were not emphasized during development.
Perhaps their real success lies with the fact that voth UNIX and MIRACLE

are friendlier than the original systems.

2ame s

PRS-

APPENDIX A: SYNTAX GRAPHS

DO Syntax Graphs

1. command

1==> § ==>!
! !
------- > command statepent —=—eeccccccaa-od
2. command statement
-------- > program Name -=—-w=—==w=> parm list -----
3. parm list
! !
e A > PArm ~-emme—=- >) =221
{ 1
| G |
4, parm
cwasea=)> DOOleaN ecccccccncnacaan >
! !
'ead> identifier «=-ub!
I !
la==)> integer eecec-w- >!
50
— — LS T e e

e o m———

Static Syntax Graphs

command %
4
tem> § =D |
! ' |
------- > command statement we—eececa-micaaaod
command statement
-------- > pcd name ==e=—weece-=> parm list ~e--=>
! !
!«==> fast command --->!
ped_name
--------- > mt_fd cemecaaaa
mt_fd
le=)> id -=> e e s e e ——— - ————————-— >
H !
! R !
! !
------- ~==> id - ————————)
! ! ! !
! ! ! 1=> P «>! !
! | ! ! ! !
lead , ==> 1d¥ =D lewd / a=dlad § =Dla=d!

*The length of this identifier must be <=z 3.

51

! !
1=> G =>!

52
5. fast command
-==> allocate =-->!
'
-===> delete ---->;
!

em==) repame —=--->!

!
!
!
leecaa> help =w====>!
!
!

e===> signoff =--=>!

lamed (—mmmmmmm———- > parm -e---=em-----o- >) mmodt
! 1o Pt !
Pemmeed! ! I R >!
[P S -——
! !
f<am NL <w-!

!
leme-=> integer ~=-=>!
!

1
!
!
]
!
lemw==)> boolean ==-=>!
! '
1
!
!

lame=> 'string! =--->!
!

cemesd mt_fd eemmm=d!

8. keyword

cmeae==) identifier ececmccacee-)

a

UNIX Syntax Graphs

command statement list

----- > command statement s~e-—ececcaca-~-)
! !
1< -3 < -t
! !
{{ommmacen [[L {cmccccuae- !

command statement

e & ==D!
! !

------- > command -- . ———m——————
! !

1 wmana {ommameat

;
! !
1<mmmm 1] Comomme !
! !

I mmee && {-mwoa=!

conmand

configuration command

[{ewmencacnasea | [y |

53

-eee==-=-==> path nane ==---=---

6. path name

l-as)> identifier ===> : ~==>!
! !

- e - o — > - - - - - - -

* this escape allowed only if path name <> null

7. fast comiand

-=> create --->!
!
--> created ==>!
1

-=> delete ===>!
1

~=> add_fd --->!
{

1
!
1

-~> rename --=>!
!

———> P

54
-—>
. *
laeed / ==ad!l e >
! o
-------------------- > identifier =-=>
! ! ! !
tama) 7 —aud! 1{eman [/ {ewcaa!
Hommwaa]
lecansd arg eea-==>!
! !
{=-=<> path name -=->!
] 1
mem e — e em————————————— >

a==)> 1ist ====)! !

!
|
]
1
f
]
! !
le==d> attp =--=>1
!
!
!
1a==d> help ====>!
!
]
!

lemes> cWd ====>!
! !
leme=> pwd a===>!
! !
V~=> signoff -=>!

! 1<~

B S

55
arglist
------------------ > (ewemesc—esca-----> path name -=-ee-----
! ! ! !
! laeed D mmmmeeccemee- >1 !
! ! ! t !
! 1 1==> > ==D !
1]]
! | > aArg e—=-ec—ecsccccmeccocvoco- >
! !
| G e L L S L P P DL L L P Lt L D it el !
arg
lammae- > 'string' ~e-e-- >!
1 !
lemmae > identifier -===- !
---------- >! lecccanaa==>
lemcans > integer ======- >!
! !
lemomee > boolean =====~- >!
- T e eeiuttatntad

LAAmer W@ oS o

%

MIRACLE Syntax Graphs

1. construct

!==> comment -=>!

2. exp
l-=> number «-v-emcccram e cctc s e >t
| ! !
L l==> string —evcecec-w-- D T >!
! !
-=> jidentifier we-cccecemcmcacccm s e >1
t 1
|==) COMMANE we~ecrmcmcrccccrccccnccancccr e e e e ———— >!
! !
low)d #2LgItS memccccmccmcccmcccccccm e e e >t
! !
{eed $fUNCLIiON =ceccrcccemccaccmccceccccccccccccemcccena- >1
1 !
le=> #sizple naMe ~-=cccccvecermccmracnrrrcerrecccemc———— 1
! !
P D A 23 N3 B - R T >!
——=>! leaa)
lew) (=) @XP =)) =eces . emccmcccccccccccccccccccmcac—- >
! !
le=> exp => binary_op - €Xp ==~=eeccccccccccncacccancaaa >!
! !
t==> .IF -> exp => .THEN -> exp => .Fl ccccccccaccccaac-- >t

le=> IF <> exp => .THEN -> exp -> .ELSE -> exp => .FI ==>!

1e=> .LOCP => exp => .END wmecccaca- cecemmcccaaaaan !
! !
1e=)> NEXT sccmccccccccccaccmmmnccmmacce e e ccccccanen >1
! !
{==)> .LEAVE cocecee- - - !
! !
le=> .EXIT «-- R M|
56

r ST
57
3. number
------ > digit ======>
1 !
| !
4, digit
laa> 0 ==D!
! !
Jamd> 1 ==Dl
! !
lam)d> 2 ==>!
! 1
lem> 3 ==D!
! !
les> 4 =Dl
> loead
lae> § <=b!
! !
lawd> 6 =wD!
! {
le=> T ==D!
! !
lemd> 8 =<l
! !
lead> G ==>!
X 5. string
====> 'any characters' ---->
6. identifier
esew=e==> simple name =-=--= cemencn——- >
! !
1-=> pattern identifier -=>!
! !
!l==> path name ee-wececocees >
7. simple nanme
cmcee=a) letter >
! !
jemeam=)> name chars =-=--->!
!
&
1 B -

58 '?
b
8. name chars {
lewa> digit ===>!
1 !
e L e ettt
! ! ! !
! la=)> letter --=>! !
! !
[SRS ! '
9. pattern identifier
1{amamm e —ceec e — e —————————— !
' ! !
e e m - —————— > pattern sef —~cccecmmmcci e >
! ! ! !
{==> simple name =-=>! |=-=> name chars -=>! i
10. pattern set
) RIS ey —— >t
‘ ! !
lawd ? comaaccaa- >!
} ———>! lawed
1-=> [tag char] ===>!
! !
{a=> [“tag char] -=>!
An asterisk matches any number cf characters; the question mark
matches a single character.
3
11. tag char
: e=e—===) name Chars ==scececcec-a >
} ! !
1{domm = (emcmccaaaa!
{
i
1
¢ ;
'—l I_.:._: ——— T TR T e e = g i o .

SR

59
12. path name
¥
!1=-=> simple name => : «>! !ecad / acad! lacccccccmcococcenea=
! P! r
——— meccem—e——- > simple name w-=>
! ! ! !
lewad 7 acadt [omw /[rmemmea !

P —

* this escape allowed only if path name <> null

13. command

«=aw-==> path name -->
! !
{==> parms -->!
14, parms
1< ————ea!
! !
-------- > simple name --> = > exp ——D

-=>!

15. function

~wa==) simple

16. letter
le=w)> a
! .
! .
lewe) 2z
=)
leme)> A
! L]
t .
lawed> 2

nane

-—>

! 1
l==> parms =<>!

[R R

.

60
17. Dbinary_op

leme) && cmew- >! "independent fork"
] !
leeed | cmeeae >i "implicit pipeline"
]
i---) L S >§ "all links explicit"
!]
leeed> D weme- >€ "update binding"
:---> > emames >§ "simplex output”
]]
i---> 5> emmem= >i "append"
] 1
i---> { come=- >i "simplex input"

!
;---> { cee-- >§ "input from string"
] 1
;--—> I cecaw >; "input from a variable"
1 1
lamad 1D cames >i "output to a variable"
1]

mmemedlaes) (2 ceam- >i--—-> "agsignment™

1 1
i---) (+) -_-->i "addition"
[} 1
taed> (=) ---->i "subtraction"
1]
i---) (*) ---->i "multiplication"
' !
i---> (/) ---->i "division"
] !
i---) (EQ) -—->% "equal"
:---> (NE) --->i "not equal®

1
i---> (&) ---->§ "andg"
1 1
;---> 1 ---->i op!
]
;---> ;] ew——- ->% "sequencing operator"
1
i---> NL -----)i "sequencing operator"

18. comment
----- ~> "any characters" eeecae-s)

ok
)
#
#
L2212

CONST

CONST

TYPE

TYPE

TYPE

TYPE

TYPE

AFPENDIX B
L Z 2R 7RV ST Y X 2 122 T AVECRIE RIS E R L R T X T R XL LR RIENETE BT 2% L R1R-R-RURFRAEL
*
NADEX NATIVE PREFIX #
*
o U % W W e 3 b0 ik 3 9k AR 3 W8 B 48 4 B0 3 o0 d0 8 3% 32 o i¢ i S0 S8 30 50 3 3 36 36 0 36 96 3 w32 36 08 3 % 35 3 o6 36 46 3 0 SH 96 8 O 5k o6 o 0 7T
PAGE_SIZE = 512; "SIZE OF DATA PAGE"
PARM_SIZE = 32; "SIZE OF PARAMETER BLOCKS"
MAX_DTS = 40; "MAX GLOBAL DTS ID*
MAX_PORT = 20; "MAX PORT ID"
MAX_PARM = 10; "MAX PARM ID"
SVC1_BLOCK_SIZE = 24; "SIZE OF SVC 1 PARM BLOCK"
SVCT7_BLOCK_SIZE = 28; "SIZE OF SVC 7 PARM BLOCK"
SD = 700; "PREFIX STACX DEPTH"
NL = *(:10:)'; CR = '(:13:)"; ETB = *(:23:)';
EM = '(:25:)"; BEL = '(:07:)';

PAGE = ARRAY [1.,PAGE_SIZE] OF BYTE;

PARAMETER = ARRAY [1..PARM_SIZE] OF BYTE;
UNIV_SVC1_BLOCK = ARRAY [1..SVC1_BLOCK_SIZE] OF BYTE;
UNIV_SVC7_BLOCK = ARRAY [1..SVC7_BLOCK_SIZE] OF BYTE;

DTS_INDX = 1..MAX_DTS; DTS_INDX0 = 0..MAX_DTS;
PORT_INDX = 1..MAX_PORT; PORT_INDXO = O0..MAX_PORT;
PARM_INDX = 1,.MAX_PARM; PARM_INDX0 = O..MAX_ PARM;

DTS_SET = SET OF DTS_INDX;

BUF_TYPES = (PARM_BUF, DATA_BUF, NIL_BUF); "BUFFER TYPES"

PREFIX_TYPES = (NATIVE_PREFIX "0", PASDRIVR_PREFIX "1");

TYPE REQ _CODES = (REQ_OK "Q", REQ NODE_ABORT "1", REQ_DTS_ABORT "“2v,

REQ_DEFER "3", REQ_UNRES_DTS "4", REQ_PROT_ERROR "S",
REQ_BAD_PORT "6"); "PREFIX DTS OPERATION RETURN CODES"

PROCEDURE READ_CHAR (PORT: PORT_INDX; VAR C:CHAR); SD;
PROCEDURE WRITE_CHAR (PORT: PORT_INDX; C:CHAR); SD;

PROCEDURE READ_DATA (PORT: PORT_INDX; VAR DATA: UNIV PAGE;

VAR LENGTH: INTEGER; VAR RESULT: REQ_CODES);

SD;

61

A . rrichamrs- Moo s < ¥ ke

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE
PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

62
WRITE_DATA (PORT: PORT_INDX; DATA: UNIV PAGE;
LENGTH: INTEGER; CONDITIO:HAL: BOOLEAN;
VAR RESULT: REQ_CODES); SD;

READ_PARM (PCRT: PORT_INDX; VAR PARM: UNIV PARAMETER;
VAR RESULT: REQ_CODES); SD;

WRITE_PARM (PORT: PORT_INDX; PARM: UNIV PARAMETER;
CONDITIONAL: BOOLEAN; VAR RESULT: REQ_CODES);
SD;

MAP_PORT (PORT: PORT_INDX; BUF_TYPE: BUF_TYPES;
VAR RDTS: DTS_INDXO; VAR WDTS: DTS_INDX0); SD;

AVAIT_EVINTS (VAR READ_WAITS, WRITE_VAITS: DTS_SET;
VAR READ_READY, WRITE_READY: DTS_SET;
VAR RESULT: REQ_CODES); SD;
DISCONNECT (PORT: PORT_INDX; VAR RESULT: REQ_CODES); SD;
FETCH_USER_ATTRIBUTES; &D;
SUBMIT_CONFIG; SD;

SVC1 (VAR PARM: UNIV UNIV_SVC1_BLCCK); 6Y4;
SVC7 (VAR PARM: UNIV UNIV_SVC7_BLOCK); 6U;

FETCH_PARM (PARM_ID: PARM_INDX; VAR PARM: UNIV PARAMETER;
VAR OK: BOOLEAN); SD;

LOAD_OVERLAY (PORT_ID: PORT_INDX; VAR OK: BOOLEAN); SD;
INVCKE_OVERLAY (VAR ARG: INTEGER;

PREFIX _TYPE: PREFIX_TYPES;

VAR RESULT, LINENO: INTEGER); SD;

CANCEL_NODE; SD;

PROCEDURE CANCEL_CONFIG; SD;

PROCEDURE

BREAKPNT (LN: INTEGER); 64;

— - S 4 At L L T T Y YT S TGN KBTI, | G T, T e

T oMy ere 0.

———d

APPENDIX C

SAMPLE USER SESSIONS

NADEX PROTOTYPE FILE SUBSYSTEM RERRIRUNRRRRRES
NADEX PROTOTYPE LINKER R00-00 * STATIC #
NADEX PROTCTYPE STATIC COMMAMD PROCESSOR R00-00 RARRRAERRNNENE S
->HELP

THE FOLLOWING "FAST" COMMANDS ARE AVAILABLE:

THE

ALLOCATE FD "ALLOCATE A NEW FILE"

DELETE FD "DELETE AN EXISTING FILE"

ATTR FD "DISPLAY THE ATTRIBUTES OF A FILE"
LIST FD "DISPLAY AN ASCII FILE AT THE CONSOLE"
SIGNOFF "TERMINATE SESSION"

RENAME OLDFD,NEWFD "RENAME A FILE"

FOLLOWING CONFIGURATIONS ARE AVAILABLE:

PAS32 "RUNS SEQUENTIAL PASCAL COMPILER"

UNIXLINK "BRINGS UNIX CMDP AND LINK CONFIGURATION UPB"
MIRC "BRINGS MIRACLE CMDP AND LINK UP"

DUMP "DISPLAYS 4 PCD"

HI "DEMONSTRATES A FRIENDLY SYSTEM"

PCD "BUILDS A NEW PCD"

DINPHIL "DINING PHILOSOPHERS CONFIGURATICN"

SIMTEST "SIMULATICN CONFIGURATIOL™

ENTERING THE NAME OF ANY COMMAND OR CONFIGURATION
WILL CISPLAY ITS CALLING FORMAT.

=>ALLOCATE NEW.TXT
=>ATTR NEW.TXT

FILE SYS2:NEW.TXT/P HAS O RECORDS OF LENGTH 512
->RENAME NEV.TXT,OLD.TXT

->DELETE OLD.TXT

=>ATTR OLD.TXT

FILE NAM/E ERROR: SYS2:0LD.TXT/P

A —— e ~————egy— = e e 2T

[P

->TEST

TRY AGAIN:

[{ANDATORY P.RAMETER CMITTE

TEST INFILE : FD,
[PROGFILE: FD DEFAULT(SYS2:GREP.I!NG/P)],
[CODESP : INT CEFAULT(S5)],
[DATASP : INT DEFAULT(10)1,
[CLAYSP : IUT DEFAULT(0)],

(INT : INT DEFAULT(1111)],

{BOOL : BOOL DEFAULT(TRUE)],

[STRING : STRING DEFAULT('HI THERE')],
[ID : ID DEFAULT(ID)],

{(FILENAME: FD DEFAULT(SYS2:FILENAME.TXT/P)]

->##JLLEGAL$$CH RACTERS???
TRY AGAIN:
CONFIGURATION_NAME

CR
CONFIGURATION_NAME [KEYWORD =] ARG, ... ,
‘ «e.y, [KEYWORD =] ARG
Lk USING
ARG: BOCLEAN, INTEGER, IDENTIFIER, STRING, FILE_DESCRIPTOR, OR ARGLIST
->UNIXLINK
NADEX PROTOTYPE LINKER R0O0-00 RRLRLELLERGLY
WORKING DIRECTORY: /HELP # UNIX *
UNIX PROTOTYPE COMMAND PROCESSCR RO0-00 Hadihchhnadui
->HELP
THE FOLLOWING "FAST" COMMANDS ARE AVAILABLE:
LS "LIST FILE NAMES IN THE CURRENT DIRECTORY"
PWD "PRINT CUREENT WORKING DIRECTORY"
WD PN "CHANGE WORKING DIRECTORY TO PATH NAME"
CREATE PN "CREATE A NEW ASCII FILE"
b CREATED PN "CREATE A NEW DIRECTORY FILE"
DELETE PN "DELETE AN EXISTING FILE"
ATTR PN "DISPLAY THE ATTRIBUTES OF A FILE"
LIST PN "DISPLAY AN ASCII FILE AT THE CONSOLE"

THE

ADD_FD PN 'MT_FD'
SIGNOFF

"ADD THE MT_FD TO THE CURRENT DIRECTORY"
"TERMINATE SESSION"

FOLLOWING CONFIGURATIONS ARE AVAILABLE:

PAS32
MIRC
CoPY
We
GREP
HI
PCD
UDUMP

"RUNS SEQUENTIAL PASCAL COMPILER"

"BRINGS MIRACLE CMDP AND LINK CONFIGURATION UP"
"COPIES ASCII FILES"

"PRINTS NO. CF CHARACTERS, WORDS, AND LINES"
"SELECTS LINES CONTAINING SPECIFIED STRING"
"DEMONSTRATES A FRIENDLY SYSTEM®

"ALLOWS USER TO CREATE NEW PCDsS"

"DISPLAYS A PCD AT THE CONSOLE"

ENTERING THE NAME OF ANY COMMAND OR CONFIGURATION
WILL DISPLAY ITS CALLING FORMAT.

- A

s

CUEEE g .

FYRY R T RS AU DR

6%
->$HELP

TRY AGAIN
PCD_NAME
OR
PCD_NAME [ARG ARG...] [<PN] [! PCD_NAME (ARG ARG ...]] [>PN]
USING
ARG: BOOLEAN, INTEGER, IDENTIFIER, STRING, PATH NAME, OR ARGLIST
~->CWD /KIM
WORKING DIRECTORY: /KIM
->LS
ENTRIES IN DIRECTORY /KIM
- SYS2:U0000000.DIR/P

CONWAY SYS2:CONWAY.TXT/P

PCDS SYS2:U000001D.DIR/P
LINK SYS2:U000002D.DIR/P
UFSS SYS2:U000002E.DIR/P
PCD SYS2:U000002F . DIR/P
DUMP SYS2:U0000030.DIR/P
CSS SYS2:U0000033.DIR/F
IMG SYS2:U0000038.DIR/P
PBM SY32:00000036.DIR/P
LS SYS2:U0000044 ,DIR/P
ED SYS2:U0000049.DAT/?

->CWD ~ ;

WORKING DIRECTORY: /
->CWD /HELP; LS
WORKING DIRECTORY: /HELP
ENTRIES IN DIRECTORY /HELP
B SYS2:U0000000.DIR/P

FILE S¥52:00000039.DAT/P
UNIX SYS2:UNIXHELP.TXT/P
cMDP SYS2:CMDPHELP.TXT/P

->ALLOCATE HEWFILE

FILE NAIE ERROR: SYS2:ALLOCATE.PCD/P
->CREATE NEWFILE

S182:U0000050./P

->ATTR NEWFILE

FILE SYS2:U0000050.DAT/P HAS 0 RECORDS OF LENGTH 512
->L3
ENTRIES IN DIRECTORY /HELP

- SYS2:U0000000.DIR/P

FILE S¥S2:U0000039.DAT/P
UNIX SYS2:UNIXHELP.TXT/P
cMDP SYS2:CMDPHELP.TXT/P
NEWFILE SYS2:U0000050.DAT/P

o s T T MO - v ivd. 5 A

(&]

o e

->CCPY

66

ERRCR IN PORT CONNECTIONC:

CCPY1.IN, COPY1.

~>COPY <UNIXHELP >NEW

CuT

FILE

PATHNAME ERRCR: UNIXUELP

TRY AGAIN:

COoPY

EXTERNAL PORTZ: IN, CUT

->COPY <UNIX JNEWFILE

NADEX PROTOTYPE LINKER RO0-CO
WORKING DIRECTORY: /HELP
UNIX PROTOTYPE CCMMAND PRCCESSCE R0O0-00

->LIAST NEWFILE

FILE NAME ERRCR: SYS2:LIAST.?CCI/P

~>LIST NEWFILE

THE FOLLOWING "FAST" COMMANDS ARE AVAILABLE:

"LIST FILE NAMES IN THE CURRENT DIRECTORY"
"PRINT CURRENT WORKING DIRECTORY"

"CHANGE WORKING DIRECTORY TO PATH NAME"
"CREATE A NEW ASCII FILE"

“CREATE A NEW DIRECTORY FILE"

"DELETE AN EXISTING FILE"

"DISPLAY THE ATTRIBUTES OF A FILE"
"DISPLAY AN ASCII FILE AT THE CONSOLE"
"ADD THE MT_FD TC THE CURRENT LIRECTORY"
"TERMINATE SESSION™

THE FOLLOWING CCNFIGCURATICNS ARE AVAILABLE:

LS
PWD
CWD PN
CREATE PN
CREATED PN
DELETE 34
ATTR PN
LIST PN
ADD_FD PN 'HTI_FD!
SIGNOFF

PAS32

MIRC

CopY

WwC

GREP

HI

PCD

UDUMP

"RUNS SEQUENTIAL PASCAL COMPILER"

"BRINGS MIRACLE CMDP AND LINK CONFIGURATION UP"
"COPIES ASCII FILES"

"PRINTS NO. OF CHARACTERS, WORDS, AND LINES"
"SELECTS LINES CONTAINING SPECIFIED STRING"
"DEMONSTRATES A FRIENDLY SYSTEM"

"ALLOWS USER TO CREATE NEW PCDsS"

“DISPLAYS A PCD AT THE CONSOLE"

ENTERING THE NAME OF ANY COMMAND OR CONFIGURATICN
WILL DISPLAY ITS CALLING FORMAT.

~>ATTR NEWFILE

FILE SYS2:U0000050.DAT/P HAS 3 RECORDS OF LENGTH 512

Ml I RS

i ad Eem Bre

l“g,; L N T

B . [

| 67
t ->GREP
MANDATORY P.RAMETER OMITTED
TRY AGAIN:
GREP SOUGHT : STRING

EXTERNAL PORTS: IN, QUT

->GREP 'ALL' <KNEWFILE ! CONSOLE && LS
PCD "ALLOWS USER TO CREATE NEW PCDS"
WILL DISPLAY ITS CALLING FORMAT.

NADEX PROTOTYPE LINKER R00-00
WORKING DIRECTORY: /HELP
UNIX PROTOTYPE COMMAND PROCESSCR R00-00
ENTRIES IN DIRECTORY /HELP
- SYS2:U0000000.DIR/P

FILE SYS2:U0000039.DAT/P
UNIX SYS2:UNIXHELF.TXT/P
CcHDP SYS2:CMDPHELP.TXT/P
: ~>GREP 'AL' <NEWFILE ! WC ! CONSCLE
| 58
12
2

NADEX PROTOTYPE LINKER R00-00

WORKING DIRECTORY: /HELP

UNIX PROTOTYPE COMMAND PROCESSOR RO0~00

->GREP 'AL' <KNEWFILE ! GREP 'US' t WC ! WC ! CONSOLE & HI
n

3
2

[) % % @ x % © 3 & HELLO YOURSELF # # & # % % # &
NADEX PROTOTYPE LINXER R0O0-00

WORKING DIRECTORY: /HELP

UNIX PROTOTYPE COMMAND PROCESSOR RO0-00

->GREP 'AL <NEWFILE ! WC

STRING TOO LONG.

TRY AGAIN
PCD_NAME
CR
PCD_NAME [ARGC ARG...] [<FD] (! PCD_NAME [ARG ARG ...]] [>FD] [&]
USING
ARG: BOOLEAM, INTEGER, IDENTIFIER, STRING, FILE_DESCRIPTCR, OR ARGLIST
~>GREP 'AL' <NEWFILE ! WC

ERROR IN PORT CONNECTIONS:
We2,0uT

- . A N T D o ” o It S
) L el BoBRR wm. e :
= plapi il

l— e g - e e —_

68
->GREP ! uC
1.ANDATORY PARAMETER CMITTED
TRY AGAIN:
GREP SOUGHT : STRING

EXTERNAL PORTS: IM, QOUT

=>MIRC

NADEX PROTOTYPE LINKER ROC-0O0

WORKING DIRECTORY: /KIM/IMG

MIRACLE PROTCTYPE CCMMAND PROCESSOR RO0-~00

Bhenblnilinwuinaivn

% MIRACLE #
B 4000 23 e e

~>$HELP
THE FOLLOWING "FAST" COMMANDS ARE AVAILABLE:
$LS "LIST FILE NAMES IN THE CURRENT CIRECTORY"
$PWD "PRINT CURRENT WORKING DIRECTORY"
$CWD PN "CHANGE WORKING DIRECTORY TO PATH NAME"
$ALLOC PN "ALLOCATE A NEW ASCII FILE"
$ALLOCD PN "ALLOCATE A NEW DIRECTORY FILE"
$DELETE py "DELETE AN EXISTING FILE"
$ATTR PN "DISPLAY THE ATTRIBUTES OF A FILE"
$LIST PN "DISPLAY AN ASCII FILE AT THE CONSOLE"

$EDIT $INT_CMDFILE "DISPLAY AN INTERNAL COMMAND FILE"

$DCL VAR: TYPE "DECLARE A VARIABLE NAME AND ITS TYPE"
$NOT EXP "NEGATES THE BOOLEAN RESULT OF THE EXP"
$ADD_FD PM 'MI_FD' "ADD THE MI_FD TO THE CURRENT DIRECTORY"

$SIGNCFF "TERMINATE SESSION"

~>HELP

THE FOLLOWING CCNFIGURATIONS ARE AVAILABLE:
PAS32 "RUNS SEQUENTIAL »ASCAL COMPILER"
MIRC "BRINGS MIRACLE CMDP AND LINK CONFIGURATION UP"
copy "COPIES ASCII FILES"
We "PRINTS NO. OF CHARACTERS, WORDS, AND LINES"
GREP "SELECTS LINES CONTAINING SPECIFIED STRING"
HI "DEL:ONSTRATES A FRIENDLY SYSTEM"
PCD "ALLOWS USER TO CREATE NEW PCDS"
upuMP "DISPLAYS A PCD AT THE CONSOLE"
DINPHIL "DINING PHILOSOPHERS CONFIGURATION"
SIMTEST "SIMULATION CONFIGURATION"

ENTERING THE NAME OF ANY COMMAND ORF CONFIGURATION

WILL DISPLAY ITS CALLING FORMAT.

TYPE $HELP FOR FAST COMMANLS HELP

e, it T TP St UV

3‘:}., TRl By

69

->$ALLOCD /XIM/NEWDR
SYS2:U0000055./P
ZERO PAGES IN DIRECTORY: /..Ili/NEWDR
->8$CWD /XIM/NEWDR
WORKING DINECTORY: /KIM/NEWDR
->ADD_FD
TRY AGAIN: $ADD_FD PATHNAILE 'MT_FD!'
->$ADD_FD NEWFILE 'NEWFILE.PAS'
->$LS
ENTRIES IN DIRECTORY /KIM/NEWDR
- SYS2:U000001C.DIR/P
NEWFILE SYS2:NEWFILE.PAS/P

~>$ATTR NEWFILE

FILE SYS2:NEVWFILE.PAS/P HAS 0 RECORDS OF LENGTH 6512
->HI && HI
% % % % % %% UELLO YOURSELF % & % % # % % %
* 0 ¥ W W ¥k ow HELLOYOURSELF W R OB oW koW B
NADEX PROTOTYPE LINKER R00-00
WORKING DIRECTORY: /KIM/NEWDR
MIRACLE PROTOTYPE COMMAND PROCESSCI R00-00
->.IF TRUE .ELSE $LS .FI
MISSING .THEN
->.IF FALSE
->$L3 .THEN $PWD .ELSE $CWD /HELP .FI
ENTRIES IN DIRECTORY /KIM/NEWDR

- SYS2:U000001C.DIR/P

NEWFILE SYS2:NEWFILE.PAS/P
/KIM/NEVDR

=>CWD “IMG
WORKING DIRECTORY: /KIM/IMG
=>$PWD

/KIM/IMG
->$PWD;
/KIM/IMG

SEQUENCING OPERAND ERROR
~>$ALLOC 1

TRY AGAIN: $ALLOC PATHNAME
=>$LS
ENTRIES IN DIRECTQORY /KIM/IMG
- S¥S2:U000001C.DIR/P

GREP SYS2:GREP.IMG/P
WC SYS2:WC. IMG/P
DUMP SYS2:DCDF.IMG/P
PECIT SYS2:PEDIT. IMG/P
MASTER SY¥S2:MASTER. IMG/P

JOBITEST SYS2:J0B1TEST. IMG/P
JOB2TEST SYS2:JOB2TEST. IMG/P

: wRemde B - R e

70

->$ALLOC /XIM/IMG/ALLOCFILE
S¥32:U0000056./P
->$ATTR ALLOCFILE

FILE SYS2:U0CC0056.DAT/P HAS
->$DELETE ALLOCFILE

~>8ATTR ALLOCFILE

FILE NOT FOUND

0 RECORDS QF LENGTH

PATHNA!IE ERRCR:
=>WC

ALLOCFILE

ERROR IN PORT CONNECTIONS:
WC.IN, WC.OUT

->WC <FILE >CUTFILE

MISSING PORT NAME

ERROR IN PGRT CONNECTIONS:
WC.IN, WC.OUT

->.IF TRUE .TEEN $PWD .FI

/KIM/INMG

->$EDIT $SIMSCEN
SIMMON MASTERS>#*1 SCENE1<>%2 SCENE2(>%*3 !!
! SCENARIO JOB1TEST SIMMCN<>¥2 t!

->$EDIT $IFPARM
FILE NAME ERROR:

->$EDIT $IFPWD
.IF $PWD .THEN $PWD .FI

SYS2:IFPARM.STR/P

~>$IFPUD

/KIM/IMG

/KIM/IMG

~>$FNU := 'SLS!

=>$FN4

ENTRIES IN DIRECTORY /KIM/IMG
- SYS2:U0C00C1C.DIR/P
GREP SYS2:GREP. IMG/P
We SYS2:WC.IMG/P
DUMP SYS2:DCDF.IMG/P
PEDIT SYS2:PEDIT.IMG/P
MASTER SYS2:MASTER.IMG/P
JOBITEST SYS2:JOB% TEST. IMG/P
JOB2TEST SYS2:JOB2TEST. IMG/P

512

SCENARIO MASTER SIMMON<>#1 !
SCENARIO JOB2TEST SIMMONK>#3

AR

2Ky B R

itﬂaﬁn&ldﬁﬁﬁ&ﬂﬁ(ncl\iu

|

=>.IF $NOT ($aT
FILE !OT FOUND

PATHNAME ERRCR: "

->.IF TRUE .THEN .IF $PWD .THEN $LS .ELSE $CWD /XIM/PCD .FI .FI

/KIM/IMG

/KIM/IMG

ENTRIES IN DIRECTCRY
- SYsz2
GREP SYS2:
We SYS2
DUMP SYs2:
PEDIT SYs2
MASTER S¥s2
JOB1TEST SYS2
JOB2TEST SYs2:

=>$SIGNOFF

TR PAS32)

A

PAS32

/XIM/IMG

:U000001C.DIR/P

GREP.IMG/P

:WC.IMG/P

DCDF.IMG/P

:PEDIT.IMG/P
:MASTER.I!G/P
:JOB1TEST. IMG/P

JOB2TEST. IMG/P

.THEN $PUD .ELSE $LS .FI

oo

| G SN Bt . ¢

REFERENCES

Balzer, R. M. Ports--A nethod for dynamic interprogram
communication and Jjob control. Proc. AFIFS Spring Joint
Computer Conference 38 (1971), 485-489.

Bourne, S. R. The UNIX shell. The Bell System Technical Journal
57, 6, Part 2 (July-August 1978), 1971-1990.

3rinch Hansen, Per. Ihe _Architecture of Concurrent Erograms.
Prentice Hzll, Englewood Cliffs, New Jersey, 1977.

Fundis, R. M., and Wallentine, Virgil. HADEX command processors
implementation, Technical Report TR-80-03, Department of
Computer Science, Kansas State University, Manhattan, Ks., July
1980.

Gray, T. E. Network job control: the tower of Babel revisited.
Doctoral Dissertation, UCLA, March 1979.

Hoare, C. A. R. Communicating sequential processes.
Communications of the ACM 21, 8 (August 1978), 666-67T7.

Joues, Anita K., et. al. Star0S, a multiprocessor operating
system for the support of task forces. Proceedings of the
Seventh Symposium on Operating System Principles, ACM SIGCPS
(December 1979), 117-127.

Qusterhout, John K., et. al. Medusa: an experinment in distributed
operating system structure, Copmupications of the ACM 23, 2,
(February 1980), 92-104.

Rochat, Xim. A software structuring tool for message-based
systems. M.S. Thesis, Dept. of Computer Science, Kansas State
University, Manhattan, Ks., 1980.

72

e 3 S |

_—

73

10. Rochat, Kim, and

- implementation, Technical Report
Computer Scisnce, Kansas State

University,
1980.

11. Ycung, Robert, and Wallentine,

system services, Technical Report
Computer Science, Kansas State
November 1979.

L. % wemeemessee—— -

Wallentine, Virgil. ILADEX " job control systenm

Department of
Manhattan, Ks., May

Virgil.

NADEX core operating
Department
Manhattan,

University,

